本高分子工学研究室

SDGs達成に向けた取り組み

研究テーマ・キーワード Research Themes・Keywords

生態系サービスを脅かす植物を原料とする 多糖材料の開発

Materials prepared from polysaccharides of plants that threaten ecosystem services

多糖

●ゲル

化学修飾 Chemical Modification

PROFILE

職位 Position

学 位

Degree

教授•大学院教授

Professor • Professor at Graduate School

生物環境化学コース

担当講義科目 公害防止管理 Charge of Subjects

Pollution Conttrol Management

FOR MORE

KANNO Kenichi

大学院

Biological and Environmental Chemistry Course

博士(工学)

Doctor of Engineering

e-mail

kanno@fuk.kindai.ac.jp

研究概要 Research Outline

アオサから得られる多糖「ウルバン」からソフトマテリアルを開発して いる。キトサンなどによって架橋されたゲルを作成し、重金属吸着剤 などへの応用をめざしています。

We converted acidic polysaccharides (ulvan) from the alga Ulva sp. into soft hydrogel materials. The gel removes heavy metal ions from aqueous solution.

進行中の研究内容 Research Contents in Progress

በ アオサから得られる多糖 「ウルバン」 を種々の方法で化学修飾す ることで、新規な高吸水性高分子の開発を試みています。

Acidic polysaccharides (ulvan) from Ulva sp. are chemically modified by various methods to investigate novel super absorbent polymer.

2 バジルシードから得られる多糖類を種々の方法で化学修飾するこ とで、新規な高吸水性高分子の開発を試みています。

Polysaccharides from basil seeds are chemically modified by various methods to investigate novel super absorbent polymer. ③ 天然多糖のクリオゲル化による多孔質ゲルの構築と薬物吸着・徐

Development of polysaccharide cryogels and its behavior of model drug adsorption/sustained release.

クリオゲルのSEM写真

放挙動を研究しています。

最近の研究実績 Recent Research Results

〈論文/Published Papers〉

● 緑潮形成藻類から得られる硫酸化多糖「ウルバン」のウレタン化と水 中重金属イオン除去, ポリマージャーナル, 46巻, 813~818ページ,

Urethane Foam of Sulfated Polysaccharide Ulvan Derived from Green-Tide Forming Chlorophyta: Synthesis and Application in the Removal of Heavy Metal ions from Aqueous Solutions, Polymer Journal, Vol.46, 813–818 (2014)

● 割れないシャボン玉の化学実験

Practical Chemistry of Long-Lasting Bubbles, World Journal of Chemical Education, 4(2), pp32-44 (2016)

● バジルシード表面から凍結破砕で得た多糖の吸水特性などについて 明らかにした。

バジルシード多糖ゲルの抽出条件と吸水特性, かやのもり, No.33, 33-38(2021)

〈招待講演/Invited Lecture〉

● 高大連携による高分子教育, IUPAC-MACRO2020+, オンライン開催 2021年5月16日~20日

Polymer Education for High School Students Based on Collaboration between the University and High Schools, The 48th World Polymer Congress, IUPAC-MACRO2020+, 16 May -20 May

SEM-EDXによる元素マッピンク