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INTRODUCTION

We investigate the degree to which artificial intelli-
gence (AI) innovations contribute to technological 
progress. Herein, we use the total factor productiv-
ity (TFP) concept that will be a proxy variable of 
Solow–Cobb–Douglas production function’s coef-
ficient. Thereafter, we conduct empirical analyses 
of AI innovation in advanced countries to establish 
the degree of penetration of AI innovation. If we 
use regression analysis, the value of TFP and the 
parameters of capital and labor will remain con-
stant in the Solow–Cobb–Douglas production 
function model. However, the value of TFP and the 
parameters of capital and labor change over time. 
Therefore, we use the Kalman filter technique to 
stochastically imitate their real changes. 

The previous works related to our research are 
as follows:

Munguia et al. (2019) present a novel approach 
for estimating the Solow–Cobb–Douglas economic 
growth model. In this study, an extended Kal-
man filter is used to estimate the system state of a 
Solow–Cobb–Douglas economic growth model. 
The proposed method is intended to simultane-
ously estimate the time-varying model parameters 
as well as the state of the dynamic system from a 
subset of available economic data measurements. 
Three time periods, namely, the convergence, test-
ing, and prediction periods, are defined for the 
experiments.

Inglesi-Lotz et al. (2014) examine the impor-
tance of technological progress to aggregate eco-
nomic growth in South Africa. Quantifying the 
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contribution of technological progress to economic 
growth has become imperative, considering the 
outcome of a simple growth accounting exercise. 
The findings of this study indicate that the con-
tribution of technological growth to aggregate 
economic growth has increased substantially over 
the past three decades. The ultimate purpose of this 
study is to describe the evolution of the contribu-
tion of technological progress captured by total 
factor productivity (TFP) or the Solow residual to 
economic growth.

Economic growth is modelled through a Cobb–
Douglas production function, employing a Kal-
man filter to determine the evolution of the Solow 
residual over time. The Solow residual represents 
both technological progress and structural change. 
According to the Kalman filter results, technologi-
cal progress has been characterized by an upward 
trend since the 1980s, with a steeper slope since the 
2000s. Their results show that technological prog-
ress has become a factor as important to produc-
tion as capital stock and labor, which policymakers 
should consider to boost economic growth. 

Through the Solow–Cobb–Douglas production 
function, we examine the degree of AI innovations 
that contribute to technological progress in several 
advanced countries via linear regression and the 
Kalman filter technique.

MODEL

In the factor analysis of economic growth, we 
consider the Solow–Cobb–Douglas production 
function model. The original Cobb–Douglas pro-
duction function at time t is given by 
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Here, we follow the Solow model and 

introduce technological progress into the 
Cobb–Douglas production function. If we 

add a technology variable tA  to the 

production function, the Solow–Cobb–
Douglas production function is expressed 
as:  

t t t tY A K Lα β=  …..4)  

Thus, the technology variable tA is 

deemed as “labor-augmenting” or 
“Harrod-neutral.” Generally, 

technological progress occurs when tA  

increases over time. For example, a unit of 
labor will be more productive when the 
level of technology is higher. Here, we can 
find that sustained growth occurs only in 
the presence of technological progress. 

Capital accumulation reduces returns 
without technological progress. However, 
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State constraints: 

, 1t t c tα β ε+ + =  …..14) 

The Solow–Cobb–Douglas production 
function in the Observation Equation 10 is 
linearized by taking a natural log for state 
variables with given technological 
progress, while State Equation 11 reveals
the state variables indicating technological 
progress. State Equations 12 and 13 are 
state variables indicating the contribution 

ratio to the output of capital tα and labor

tβ  , respectively. State Constraint

Equation 14 is almost true for the constant 
returns to scale concept. 

3. Empirical Results
First, we conduct an empirical analysis of 
the Solow–Cobb–Douglas production 
function using a multiple regression 
analysis. The databases of these analyses 
are based on World Bank national 
accounts data and OECD national 
accounts data files. The data period is from 
1990 to 2019, on an annual basis. We 
divide the data period into three from 1990 
to 1999, 2000 to 2009, and 2010 to 2019 
to observe the trend of change in 
technological progress. Table 1 shows that 

the coefficients of λ  , tT , and ln tK  are 

significant at the 5% confidence level, 

except for ln tK , from 2000 to 2009 and

λ , tT  , and ln tK  from 2010 to 2019. In 

addition, the adjusted R-squared value in 
each case shows a relatively high level in 

their figures. Here, tA , which is a proxy 

variable for technological progress, shows 
a 1.61% increase over the past three 
decades (from 1990 to 2019). Strictly 
speaking, the first decade (from 1990 to 
1999) shows a 2.77% however, the 
second decade (from 2000 to 2009) shows 
a 1.02% increase, and the third decade 
(from 2010 to 2019) showed a 2.71% 
decrease.

After the collapse of the bubble 
economy in 1990, Japanese companies 
intentionally increased their retained 
earnings owing to a huge loss of 
investment activities.  

In particular, tA marked a 2.77% increase,

implying that the technological progress 
rate was constant from 1990 to 1999 with 
more research and development (R&D)-
intensive investments. In addition, the 

values of tA  decrease after 2000 lies in 

the shift from capital-intensive to labor-
intensive with the consideration of 
employment. Another reason is that 

…12) 
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Solow–Cobb–Douglas production function using 
a multiple regression analysis. The databases of 
these analyses are based on World Bank national 
accounts data and OECD national accounts data 
files. The data period is from 1990 to 2019, on an 
annual basis. We divide the data period into three 
from 1990 to 1999, 2000 to 2009, and 2010 to 2019 
to observe the trend of change in technological 
progress. Table 1 shows that the coefficients of λ, 
Tt, and ln Kt are significant at the 5% confidence 
level, except for ln Kt, from 2000 to 2009 and λ, 
Tt, and ln Kt and from 2010 to 2019. In addition, 
the adjusted R-squared value in each case shows a 
relatively high level in their figures. Here, At, which 
is a proxy variable for technological progress, shows 
a 1.61% increase over the past three decades (from 
1990 to 2019). Strictly speaking, the first decade 
(from 1990 to 1999) shows a 2.77%, however, the 
second decade (from 2000 to 2009) shows a 1.02% 
increase, and the third decade (from 2010 to 2019) 
showed a 2.71% decrease.

After the collapse of the bubble economy in 
1990, Japanese companies intentionally increased 
their retained earnings owing to a huge loss of 
investment activities. 

In particular, At marked a 2.77% increase, 
implying that the technological progress rate was 
constant from 1990 to 1999 with more research 
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and development (R&D)-intensive investments. In 
addition, the values of At decrease after 2000 lies 
in the shift from capital-intensive to labor-intensive 
with the consideration of employment. Another 
reason is that companies save retained earnings 
with fewer investments.

Table 2 shows that the coefficients of λ, Tt, and 
ln Kt are significant at the 5% confidence level, 
except for ln Kt, from 1990 to 2019 and λ and 
ln Kt, from 1990 to 1999. In addition, the adjusted. 
R-square value in each case shows a relatively 
high level in their figures. Here, At shows a 2.07% 
increase over the past three decades (from 1990 
to 2019). Strictly speaking, the first decade (from 
1990 to 1999) shows a 1.89% increase; however, the 

second decade (from 2000 to 2009) shows a 2.04% 
increase, and the third decade (from 2010 to 2019) 
shows a 1.04% increase. 

Therefore, the value of At fluctuates each decade 
under the steady technological progress rate of 
Tt. However, the values of the coefficient in ln Kt 
increase in each decade for the growth of labor 
productivity.

Table 3 shows that the coefficients of λ, Tt, and 
ln Kt are significant at the 5% confidence level, 
except for ln Kt, from 1990 to 1999 and λ, Tt, and 
ln Kt, from 2010 to 2019. In addition, the adjusted 
R-square value in each case shows a relatively 
high level in their figures. Here, At shows a 0.90% 
increase over the past three decades (from 1990 

Table 1: Multiple Regression Analysis: Japan

Period Variable Coefficient Standard Error t-Statistic Prob. R-squared Adj. R-squared At

1990-2019
λ -11.7769 0.7014 -16.7895 0.0000 0.9443 0.9402 0.0161
Tt 0.4977 0.0273 18.2001 0.0000

ln Kt 0.5205 0.0596 8.7271 0.0000

1990-1999
λ -8.5793 1.0454 -8.2069 0.0001 0.9839 0.9793 0.0277
Tt 0.3751 0.0400 9.3686 0.0000

ln Kt 0.6517 0.0785 8.3051 0.0001

2000-2009
λ -11.9443 3.3721 -3.5421 0.0094 0.7994 0.7421 0.0102
Tt 0.4986 0.1290 3.8645 0.0062

ln Kt 0.3421 0.1978 1.7299 0.1273

2010-2019
λ -13.5178 10.5134 -1.2858 0.2394 0.9160 0.8920 -0.0271
Tt 0.5684 0.3926 1.4476 0.1910

ln Kt 0.6234 0.5112 1.2195 0.2621

Table 2: Multiple Regression Analysis: U.S.A.

Period Variable Coefficient Standard Error t-Statistic Prob. R-squared Adj. R-squared At

1990-2019
λ -9.9290 0.8107 -12.2468 0.0000 0.9963 0.9961 0.0207
Tt 0.3937 0.0279 14.0988 0.0000

ln Kt 0.1166 0.0637 1.8292 0.0784

1990-1999
λ -6.9466 3.8338 -1.8119 0.1129 0.9905 0.9878 0.0189
Tt 0.2831 0.1366 2.0728 0.0769

ln Kt 0.1925 0.2119 0.9087 0.3937

2000-2009
λ -11.0810 0.8936 -12.3998 0.0000 0.9915 0.9891 0.0204
Tt 0.4414 0.0328 13.4632 0.0000

ln Kt 0.2338 0.0524 4.4641 0.0029

2010-2019
λ -5.3368 0.7698 -6.9323 0.0002 0.9990 0.9987 0.0104
Tt 0.2328 0.0273 8.5112 0.0001

ln Kt 0.3565 0.0350 10.1897 0.0000
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to 2019). Strictly speaking, the first decade (from 
1990 to 1999) shows a 2.96% increase; however, the 
second decade (from 2000 to 2009) shows a 1.95% 
increase, and the third decade (from 2010 to 2019) 
shows a 1.14% decrease.

The value of At decreases in each decade. How-
ever, the values of the coefficient in ln Kt increase in 
each decade for the growth of labor hours, and not 
productivity in the UK case.

Table 4 shows that the coefficients of λ, Tt, and 
ln Kt are significant at the 5% confidence level, 
except for ln Kt, from 2000 to 2009. In addition, 
the adjusted R-square value in each case shows a 
relatively high level in their figures. Here, At shows 
a 1.17% increase over the past three decades (from 

1990 to 2019). Strictly speaking, the first decade 
(from 1990 to 1999) shows a 0.92% increase; how-
ever, the second decade (from 2000 to 2009) shows 
a 5.43% increase, and the third decade (from 2010 
to 2019) shows a 0.69% decrease. The value of At 
fluctuates in each decade. However, the values of 
the coefficient in ln Kt fluctuate in each decade. 
Germany’s Industry 4.0, will lead to the growth of 
labor productivity.

Table 5 shows that the coefficients of λ, Tt, and 
ln Kt are significant at the 5% confidence level, 
except for λ from 1990 to 2019, ln Kt from 1990 
to 1999, and λ, Tt, and ln Kt from 2010 to 2019. 
In addition, the adjusted R-square value in each 
case shows a relatively high level in their figures. 

Table 3: Multiple Regression Analysis: U. K.

Period Variable Coefficient Standard Error t-Statistic Prob. R-squared Adj. R-squared At

1990-2019
λ -5.6623 1.2320 -4.5960 0.0001 0.9826 0.9813 0.0090
Tt 0.2809 0.0459 6.1168 0.0000

ln Kt 0.5454 0.1120 4.8709 0.0000

1990-1999
λ -18.2261 6.0863 -2.9946 0.0201 0.9325 0.9132 0.0296
Tt 0.7890 0.2412 3.2717 0.0136

ln Kt 0.2055 0.2924 0.7027 0.5049

2000-2009
λ -8.9289 1.1819 -7.5544 0.0001 0.9952 0.9938 0.0195
Tt 0.4090 0.0458 8.9227 0.0000

ln Kt 0.4146 0.0664 6.2410 0.0004

2010-2019
λ 16.3518 15.7524 1.0381 0.3338 0.4772 0.3278 -0.0114
Tt -0.5922 0.6162 -0.9611 0.3685

ln Kt 1.0389 0.5645 1.8404 0.1083

Table 4: Multiple Regression Analysis: Germany

Period Variable Coefficient Standard Error t-Statistic Prob. R-squared Adj. R-squared At

1990-2019
λ -5.2687 0.7980 -6.6020 0.0000 0.9698 0.9675 0.0117
Tt 0.2564 0.0293 8.7516 0.0000

ln Kt 0.6586 0.0844 7.8057 0.0000

1990-1999
λ -3.4517 1.3435 -2.5692 0.0371 0.9729 0.9651 0.0092
Tt 0.1883 0.0515 3.6555 0.0081

ln Kt 0.7915 0.1157 6.8391 0.0002

2000-2009
λ 16.3003 2.1287 -7.6576 0.0001 0.9907 0.9881 0.0543
Tt 0.6778 0.0802 8.4559 0.0001

ln Kt 0.2008 0.1171 1.7156 0.1299

2010-2019
λ 7.2453 2.3297 3.1099 0.0171 0.8808 0.8468 -0.0069
Tt -0.2306 0.0902 -2.5579 0.0377

ln Kt 0.8159 0.0965 8.4547 0.0001
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Here, At shows a 0.36% increase over the past three 
decades (from 1990 to 2019). Strictly speaking, the 
first decade (from 1990 to 1999) shows a 0.61% 
decrease; however, the second decade (from 2000 to 
2009) shows a 3.49% increase, and the third decade 
(from 2010 to 2019) shows a 0.17% increase.

The value of At fluctuates in each decade. How-
ever, the values of the coefficient in ln Kt increase in 
each decade for the AI investment strategy of the 
French government.

The following Figure 1 summarizes the above-
mentioned empirical results graphically.

Some countries, such as Japan, the UK, and 
Germany, show a decrease from 2010 to 2019.

However, constant technological progress can 
be observed in every country from 1990 to 2019.

Meanwhile, we can show the results of the Kal-
man filter technique as follows:

Basically, the database and method of analysis 
are the same as in the multiple regression analysis 
that we conduct here. The results of the state vari-
ables in Japan are shown in Table 6. For example, 
the final states of the estimated values of the state 
variables are LN_TP_Y_ and ALPHA, respectively. 
In the past three decades, the mean of LN_TP_Y_ 
is 1.3176, the root-mean square error is 0.0936, and 
the z-statistic is 1.3176/0.0936 = 14.0779. The mean 
of ALPHA is 0.8855, the root-mean square error 

Table 5: Multiple Regression Analysis: French

Period Variable Coefficient Standard Error t-Statistic Prob. R-squared Adj. R-squared At

1990-2019
λ -3.3206 2.2531 -1.4738 0.1520 0.9793 0.9778 0.00036
Tt 0.1798 0.0875 2.0546 0.0500

ln Kt 0.5652 0.1184 4.7726 0.0001

1990-1999
λ -23.8272 8.6885 -2.7424 0.0290 0.7987 0.7412 -0.0061
Tt 0.9877 0.3495 2.8257 0.0260

ln Kt -0.2478 0.2663 -0.9306 0.3830

2000-2009
λ -9.2342 1.3352 -6.9160 0.0002 0.9984 0.9979 0.00349
Tt 0.4166 0.0524 7.9452 0.0001

ln Kt 0.4353 0.0574 7.5743 0.0001

2010-2019
λ -7.7175 11.8188 -0.6530 0.5350 0.7543 0.6841 0.00017
Tt 0.3588 0.4657 0.7706 0.4660

ln Kt 0.6429 0.3602 1.7848 0.1180
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is 0.1204, and the z-statistic is 0.8855/0.1204 = 
7.3569. Judging from the values of the final state in 
each decade, the mean of LN_TP_Y_ is 1.4660 and 
the mean of ALPHA is 1.0772 in the third decade 
(from 2010 to 2019). Thus, we can surmise that 
technological progress by AI is conspicuous from 
the value of LN_TP_Y_, and the capital-intensive 
trend can be seen from the value of ALPHA in the 
third decade by the increase of labor productivity.

There are three types of estimated values for the 
state variables. These are the one-step-ahead pre-
dicted states, filtered state estimates, and smoothed 
state estimates. For example, one-step-ahead pre-
dicted states predict the mean and variance of the 
state variables at time t using information at time 
t-1. Filtered state estimates calculate the mean and 
variance of state variables in time t by using the 

information at time t. Smoothed state estimates 
also calculate the mean and variance of state vari-
ables in time t by using the information at time T. 
Concerning the figures of the three estimates of 
state variables, we omit each decade’s results due to 
space limitations. In other words, we refer only to 
the past three decades.

The means of state variables such as LN_TP_Y_ 
and ALPHA can be depicted by the time series 
graphs of the ±2×Root MSE from Figure 2. More 
precisely, one-step-ahead is an initial next-period 
prediction, and the filtered state filters the one-
step-ahead prediction.

The predicted states at this moment and the 
smoothed state trace back all the periods from the 
final period. Thus, for practical convenience, we 
mainly refer to the movements of a smoothed state. 

Table 6: Kalman Filter Analysis : Japan

Period Variable Final State RMSE z-Statistic Prob.

1990-2019
LN_TP_Y_ 1.3176 0.0936 14.0779 0.0000

ALPHA 0.8855 0.1204 7.3569 0.0000

1990-1999
LN_TP_Y_ 1.2256 0.0886 13.8385 0.0000

ALPHA 0.8912 0.1316 6.7709 0.0000

2000-2009
LN_TP_Y_ 1.0354 0.1326 7.8109 0.0000

ALPHA 0.3779 0.1701 2.2216 0.0263

2010-2019
LN_TP_Y_ 1.4660 0.0675 21.7226 0.0000

ALPHA 1.0772 0.0919 11.7199 0.0000
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smoothed state estimate in ALPHA 
decreases from 1990 to 2010 and increases 
from 2010 to 2019. This is because
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and AI progress from 1990 to 2019 in the 
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ALPHA increases with an increase in 
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leads to economic growth and an 
improvement in the employment 
environment. 
 

Figure 2. Three Estimates of States Variables : JAPAN (1990 - 2019)
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Period Variable Final State RMSE z-Statistic Prob.

1990-2019 LN_TP_Y_ 0.8187 0.0157 52.2559 0.0000

ALPHA 0.1587 0.0139 11.4170 0.0000

1990-1999 LN_TP_Y_ 0.6963 0.1552 4.4865 0.0000

ALPHA 0.3881 0.1262 3.0767 0.0021

2000-2009 LN_TP_Y_ 0.5849 0.1122 5.2138 0.0000

ALPHA 0.1274 0.0838 1.5209 0.1283

2010-2019 LN_TP_Y_ 1.0952 0.0783 13.9793 0.0000

ALPHA 0.4852 0.0860 5.6432 0.0000

Table 7.  Kalman Filter Analysis : U.S.A.   

Figure 2: Three Estimates of States Variables: Japan (1990–2019)
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From Figure 2, it is evident that the smoothed state 
estimate in LN_TP_Y_ gradually increases from 
1990 to 2010 and decreases from 2010 to 2019. 
However, the smoothed state estimate in ALPHA 
decreases from 1990 to 2010 and increases from 
2010 to 2019. This is because LN_TP_Y_ expands 
steadily around R&D until 2010, and supports tech-
nological progress. However, after 2010, it grows at 
a sluggish pace. ALPHA decreases for companies 
that have saved retained earnings with less invest-
ments from 1990 to 2010. However, investments 
grow from 2010 to 2019. 

Based on Table 7 and Figure 3., the value of 
LN_TP_Y_ increases with R&D and AI progress 
from 1990 to 2019 in the United States. In addition, 
the value of ALPHA increases with an increase 
in labor productivity and investment. This leads 

to economic growth and an improvement in the 
employment environment.

Based on the data in Table 8 and Figure 4, the 
value of LN_TP_Y_ maintains a high value from 
1990 to 2019. However, this means that the high 
value of LN_TP_Y_ from 2000 to 2009 lies in R&D 
investments. However, ALPHA increases with an 
increase in labor productivity and investment from 
2000 to 2009. 

Based on Table 9 and Figure 5, the value of 
LN_TP_Y_ is stagnant due to the high level of 
R&D investment. The value of ALPHA increases 
because of the increase in labor productivity and 
investment since 1990. This coincides with the EU’s 
lowest unemployment rate.

Based on Table 10 and Figure 6, the value of 
LN_TP_Y_ increases constantly from 1990 to 2019. 

Figure 3: Three Estimates of States Variables: U.S.A (1990–2019)
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1990-2019 LN_TP_Y_ 1.3623 0.0901 15.1234 0.0000

ALPHA 0.7098 0.0825 8.6023 0.0000

1990-1999 LN_TP_Y_ 0.3597 0.1304 2.7577 0.0058

ALPHA -0.0336 0.0990 -0.3395 0.7342

2000-2009 LN_TP_Y_ 1.3794 0.0773 17.8457 0.0000

ALPHA 0.6377 0.0588 10.8531 0.0000

2010-2019 LN_TP_Y_ 0.5297 0.0617 8.5798 0.0000

ALPHA 0.0000 0.0000 0.0000 1.0000

Table 8.  Kalman Filter Analysis : U.K.   
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Table 8: Kalman Filter Analysis: U.K.

Period Variable Final State RMSE z-Statistic Prob.

1990-2019
LN_TP_Y_ 1.3623 0.0901 15.1234 0.0000

ALPHA 0.7098 0.0825 8.6023 0.0000

1990-1999
LN_TP_Y_ 0.3597 0.1304 2.7577 0.0058

ALPHA -0.0336 0.0990 -0.3395 0.7342

2000-2009
LN_TP_Y_ 1.3794 0.0773 17.8457 0.0000

ALPHA 0.6377 0.0588 10.8531 0.0000

2010-2019
LN_TP_Y_ 0.5297 0.0617 8.5798 0.0000

ALPHA 0.0000 0.0000 0.0000 1.0000

Table 9: Kalman Filter Analysis: Germany

Period Variable Final State RMSE z-Statistic Prob.

1990-2019
LN_TP_Y_ 1.1795 0.0596 19.7917 0.0000

ALPHA 0.6555 0.0633 10.3629 0.0000

1990-1999
LN_TP_Y_ 0.1713 0.0718 2.3851 0.0171

ALPHA 0.0000 0.0000 0.0000 1.0000

2000-2009
LN_TP_Y_ 1.1381 0.1242 9.1617 0.0000

ALPHA 0.5168 0.1164 4.4397 0.0000

2010-2019
LN_TP_Y_ 1.1675 0.0687 16.9998 0.0000

ALPHA 0.6444 0.0642 10.0417 0.0000
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Based on Table 9 and Figure 5, the 
value of LN_TP_Y_ is stagnant due to the 
high level of R&D investment. The value 

of ALPHA increases because of the 
increase in labor productivity and 
investment since 1990. This coincides 
with the EU’s lowest unemployment rate. 

Figure 4. Three Estimates of States Variables : U.K. (1990 - 2019)
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Period Variable Final State RMSE z-Statistic Prob.

1990-2019 LN_TP_Y_ 1.1795 0.0596 19.7917 0.0000

ALPHA 0.6555 0.0633 10.3629 0.0000

1990-1999 LN_TP_Y_ 0.1713 0.0718 2.3851 0.0171

ALPHA 0.0000 0.0000 0.0000 1.0000

2000-2009 LN_TP_Y_ 1.1381 0.1242 9.1617 0.0000

ALPHA 0.5168 0.1164 4.4397 0.0000

2010-2019 LN_TP_Y_ 1.1675 0.0687 16.9998 0.0000

ALPHA 0.6444 0.0642 10.0417 0.0000

Table 9.  Kalman Filter Analysis : Germany  

Figure 4: Three Estimates of States Variables: U.K. (1990–2019)
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Figure 5: Three Estimates of States Variables: Germany (1990–2019)

Figure 6: Three Estimates of States Variables: French (1990–2019)

Table 10: Kalman Filter Analysis: French

Period Variable Final State RMSE z-Statistic Prob.

1990-2019
LN_TP_Y_ 1.2335 0.0448 27.5505 0.0000

ALPHA 0.7596 0.0653 11.6369 0.0000

1990-1999
LN_TP_Y_ 0.3921 0.0325 12.0807 0.0000

ALPHA 0.0150 0.0523 0.2862 0.7747

2000-2009
LN_TP_Y_ 1.2188 0.0517 23.5713 0.0000

ALPHA 0.5960 0.0699 8.5229 0.0000

2010-2019
LN_TP_Y_ 1.2898 0.0619 20.8516 0.0000

ALPHA 0.8316 0.0811 10.2566 0.0000
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Based on Table 10 and Figure 6, the 
value of LN_TP_Y_ increases constantly 
from 1990 to 2019. In particular, the AI 
investment strategy implemented by the 

French government has been effective 
since 2018. The value of ALPHA also 
increases constantly with an increase in 
labor productivity and investment from 
1990 to 2019. 

Figure 5. Three Estimates of States Variables : Germany (1990 - 2019)
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1990-2019 LN_TP_Y_ 1.2335 0.0448 27.5505 0.0000

ALPHA 0.7596 0.0653 11.6369 0.0000

1990-1999 LN_TP_Y_ 0.3921 0.0325 12.0807 0.0000

ALPHA 0.0150 0.0523 0.2862 0.7747

2000-2009 LN_TP_Y_ 1.2188 0.0517 23.5713 0.0000

ALPHA 0.5960 0.0699 8.5229 0.0000

2010-2019 LN_TP_Y_ 1.2898 0.0619 20.8516 0.0000

ALPHA 0.8316 0.0811 10.2566 0.0000

Table 10.  Kalman Filter Analysis : French  
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4. The Future of AI 
Notably, AI will make predictions cheaper, 
faster, and more accurate with the progress 
of deep learning using neural network 
systems. It is well known that when the 
accuracy of predictions exceeds a certain 
threshold, it will have a profound impact 
on the strategy. Furthermore, AI will 
understand, interpret, and mimic human 
emotions sooner than later, and it will 
eventually replace human-to-human 
interactions. People who use these 
emotions will have an interest in privacy 
intrusion and manipulation. As AI 
progresses, it will depend less on bottom-
up big data and more on top-down 
reasoning, which mimics the way humans 
approach problems and tasks. This trend 
will make it possible to apply AI more 
widely than ever before, creating 
opportunities for early adopters, even in 
businesses and activities wherein AI has 

previously seemed inappropriate. 

5. Conclusion 
We use the TFP concept as a proxy 
variable of the Solow–Cobb–Douglas 

production function’s coefficient, tA .

Through the Solow–Cobb–Douglas 
production function, we examine the 
degree of AI innovations that contribute to 
technological progress in five advanced 
countries by using multiple regression 
analysis and the Kalman filter technique. 
Although multiple regression analysis 
only analyzes the data at one point in time,
the Kalman filter technique analyzes the 
data throughout the entire period. Thus, 
we note that the Kalman filter technique 
reinforces the data analyses made via 
multiple regression analysis in this study.  

References
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Figure 6. Three Estimates of States Variables : French (1990 - 2019)
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In particular, the AI investment strategy imple-
mented by the French government has been effec-
tive since 2018. The value of ALPHA also increases 
constantly with an increase in labor productivity 
and investment from 1990 to 2019.

THE FUTURE OF AI

Notably, AI will make predictions cheaper, faster, 
and more accurate with the progress of deep learn-
ing using neural network systems. It is well known 
that when the accuracy of predictions exceeds a 
certain threshold, it will have a profound impact 
on the strategy. Furthermore, AI will understand, 
interpret, and mimic human emotions sooner 
than later, and it will eventually replace human-
to-human interactions. People who use these emo-
tions will have an interest in privacy intrusion and 
manipulation. As AI progresses, it will depend less 
on bottom-up big data and more on top-down rea-
soning, which mimics the way humans approach 
problems and tasks. This trend will make it possible 
to apply AI more widely than ever before, creating 
opportunities for early adopters, even in businesses 
and activities wherein AI has previously seemed 
inappropriate.

CONCLUSION

We use the TFP concept as a proxy variable of the 
Solow–Cobb–Douglas production function’s coef-
ficient, At.

Through the Solow–Cobb–Douglas production 
function, we examine the degree of AI innovations 
that contribute to technological progress in five 
advanced countries by using multiple regression 
analysis and the Kalman filter technique.

Although multiple regression analysis only 
analyzes the data at one point in time, the Kalman 
filter technique analyzes the data throughout the 
entire period. Thus, we note that the Kalman filter 
technique reinforces the data analyses made via 
multiple regression analysis in this study. 
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