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Abstract: This paper shows negative results for the following fundamental problems: (i) 

can the improvement of competitive balance lead to the maximization of the total league 

profits?, and (ii) can the optimal distribution of talent be achieved through a process of 

spontaneous player trading among teams under the regulatory systems used in the 

professional sports league of North America (e.g. revenue sharing and salary caps) when 

the initial distribution of talent is different from it?  
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1. Introduction 

 

In the professional sports league of North America, various regulatory systems are used 

to improve competitive balance in the league. This is because since the “uncertainty of 

outcome hypothesis” was first articulated by Neal (1964), it has been widely believed that 

the improvement of competitive balance increases fan interest in games, each team’s 

profits, and therefore the total league profits. The impact of regulatory systems on 

competitive balance has been studied by many economists: revenue sharing arrangements 

(e.g., El-Hodiri & Quirk, 1971; Fort & Quirk, 1995; Vrooman, 1995; Marburger, 1997; 

Késenne, 2000a, 2005; Szymanski & Késenne, 2004; Dietl et al., 2011) and salary cap 

restrictions (e.g., Fort & Quirk, 1995; Vrooman, 1995; Késenne, 2000b; Dietl et al., 2011).  

As is well known, whether or not revenue sharing improves competitive balance 

depends on the choice of a conjectural variation 𝑑𝑑𝑥𝑥𝑗𝑗 𝑑𝑑𝑥𝑥𝑖𝑖⁄  (i ≠ j) (i.e. the rate of change 

in team j’s choice variable anticipated by team i in response to its own change). On the 

one hand, it was shown that under the Walrasian conjectures 𝑑𝑑𝑥𝑥𝑗𝑗 𝑑𝑑𝑥𝑥𝑖𝑖⁄ = −1  the 

introduction of revenue sharing has no impact on competitive balance in the league, i.e. 

the so-called “invariance proposition” (El-Hodiri & Quirk, 1971; Fort & Quirk, 1995; 

Vrooman, 1995; Dietl et al., 2011). On the other hand, it was shown that under the Nash 



3 
 

conjectures 𝑑𝑑𝑥𝑥𝑗𝑗 𝑑𝑑𝑥𝑥𝑖𝑖⁄ = 0 the invariance proposition does not hold and the introduction 

of revenue sharing worsens competitive balance in the league (Szymanski & Késenne, 

2004; Késenne, 2005).  

For a salary cap that is exogenously given, Késenne (2000b) showed that if the 

salary cap is binding only for a large-market team, then the introduction of the salary cap 

improves competitive balance. The reason is that the exogenously given salary cap 

reduces only the demand for talent of a large-market team. Moreover, for a salary cap and 

a salary floor that are exogenously given, Dietl et al. (2011) showed that if the salary cap 

is not binding for a large-market team and the salary floor is binding only for a small-

market team, then the introduction of the salary cap and floor improves competitive 

balance. The reason is that the exogenously given salary floor increases only the demand 

for talent of a small-market team. 

The purpose of this paper is to study the following fundamental problems, which 

have not been addressed: (i) whether or not the improvement of competitive balance leads 

to the maximization of the total league profits, and (ii) whether or not the optimal 

distribution of talent, which maximizes the total league profits, can be achieved through 

a process of player trading among teams under the regulatory systems mentioned above 

when the initial distribution of talent is different from it.  
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This paper is organized as follows. Section 2 discusses an N-team model where 

each team is a profit maximizer, each team’s revenues depend only on relative team 

qualities, and talent supply is fixed. A salary cap studied in this paper is determined 

endogenously. Section 3 examines the first-order conditions for the total league profit 

maximization and shows a negative result about (i). Section 4 introduces incentive 

constraints for player trading and the concept of stability of a talent distribution. Section 

5 shows a negative result about (ii). 

 

2. The Model 

 

2.1  Revenue Function 

 

We consider a N ≥ 3-team league that runs a regular season every period of time t (t =

0,1, …). In this league each team behaves as a profit maximizer, and per-period profits of 

each team consist of total revenue received less player salaries. The total revenue 

generated by team i (i = 1, … , N) in period t is given by 𝑅𝑅𝑖𝑖(𝑤𝑤𝑖𝑖(𝑥𝑥𝑡𝑡);𝑚𝑚𝑖𝑖). Here 𝑤𝑤𝑖𝑖(𝑥𝑥𝑡𝑡) 

is the season win percentage of team i in period t satisfying the adding-up constraint 

∑𝑤𝑤𝑘𝑘(𝑥𝑥𝑡𝑡) = 1 for all t, 𝑥𝑥𝑡𝑡 = (𝑥𝑥1𝑡𝑡, … , 𝑥𝑥𝑁𝑁𝑁𝑁) is a distribution of playing talent in the 
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league satisfying a constraint of fixed-supply of talent ∑𝑥𝑥𝑘𝑘𝑘𝑘 = 𝑋𝑋 for all t, and 𝑚𝑚𝑖𝑖 is a 

market size (or drawing potential) of team i. For simplicity, the market sizes of the teams 

are assumed to be constant over time and 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁 . The revenue function is 

increasing and concave in 𝑤𝑤𝑖𝑖 : 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ > 0 and 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖
2⁄ < 0. In addition, it is 

assumed that the market size has a positive effect on the marginal revenue of winning, 

𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑚𝑚𝑖𝑖⁄ > 0 . In other words, the revenue function has strictly increasing 

differences in (𝑤𝑤𝑖𝑖,𝑚𝑚𝑖𝑖) (see Topkis (1998) and Vives (1999)). 

 

2.2  Contest Success Function 

 

We assume that the win percentage of a team has the following properties: 

(W-1) 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = −∑ 𝜕𝜕𝑤𝑤𝑘𝑘(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄𝑘𝑘≠𝑖𝑖 .  

(W-2) 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ > 0 and 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄ < 0, and 𝑤𝑤𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑗𝑗(𝑥𝑥) for i ≠ j if 𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑗𝑗. Therefore, 𝑤𝑤𝑖𝑖(𝑥𝑥) < 𝑤𝑤𝑗𝑗(𝑥𝑥) for i ≠ j if 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗 . 

(W-3) 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖2⁄ < 0 , and 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  for i ≠ j  if 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗 . 

Therefore, 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ > 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  for i ≠ j if 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗 . 

(W-4) 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄ = 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑘𝑘⁄  for all i ≠ j ≠ k. 

(W-5) 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗� = 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑘𝑘⁄ < 0  and 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗2� =
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𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑘𝑘� = 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑘𝑘2⁄ > 0 for all i ≠ j ≠ k. 

(W-6) 𝑤𝑤𝑖𝑖(𝜆𝜆𝜆𝜆) = 𝑤𝑤𝑖𝑖(𝑥𝑥) for all i, λ > 0, and λx = (𝜆𝜆𝑥𝑥1, … , 𝜆𝜆 𝑥𝑥𝑁𝑁). 

(W-1) is the zero-sum property of contests. (W-2) is monotonicity and anonymity 

of the win percentage. (W-3) is concavity and anonymity of the win percentage. (W-4) 

represents a symmetric property of contests, which means that the effect of a talent 

increase in a rival j ≠ i on a team i’s win percentage depends only on the talent level of 

team i. The equalities in (W-5) follow from (W-4). (W-6) is homogeneity of the win 

percentage.  

It can be verified that the assumptions of (W-1), (W-2), and (W-6) are satisfied 

for the power form contest success function (CSF) 𝑤𝑤𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑖𝑖
𝛾𝛾 ∑ 𝑥𝑥𝑘𝑘

𝛾𝛾�  with γ > 0 . 1 

Moreover, all the assumptions (W-1)-(W-6) are satisfied if γ = 1 and the conjectural 

variation is the Nash conjectures 𝑑𝑑𝑥𝑥𝑗𝑗 𝑑𝑑𝑥𝑥𝑖𝑖⁄ = 0 for all i ≠ j. The assumptions of (W-1), 

(W-2), (W-4), and (W-6) are satisfied, even if the conjectural variation is the Walrasian 

conjectures ∑𝑑𝑑𝑥𝑥𝑘𝑘 𝑑𝑑𝑥𝑥𝑖𝑖⁄ = 0  for all i . Under the Walrasian conjectures, we obtain 

𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖2⁄ = 0  and 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  instead of (W-3) for all x , and 

𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗� = 0 and 𝜕𝜕2𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗2� = 0 instead of (W-5) for all x. 

                                                   
1As shown by Skaperdas (1996, Theorem 2), the power form is the only functional form that 
satisfies positivity and the adding-up constraint, monotonicity, anonymity, homogeneity, consistency, 
and independence from irrelevant alternatives (IIAs). 
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2.3  Revenue Sharing and Salary Caps 

 

First, we introduce revenue sharing arrangements. Under a pool sharing system, each 

team retains a fraction µϵ[0,1] of its own revenues and then receives 1 𝑁𝑁⁄  of a revenue 

pool made up of all teams’ revenues. Let 𝑅𝑅�(𝑥𝑥𝑡𝑡) = ∑𝑅𝑅𝑘𝑘(𝑤𝑤𝑘𝑘(𝑥𝑥𝑡𝑡);𝑚𝑚𝑘𝑘) 𝑁𝑁⁄  be the total 

league revenue in period t divided by the number of teams 𝑁𝑁. Then the post-sharing 

revenue that team i receives in period t (t ≥ 0) is µ𝑅𝑅𝑖𝑖(𝑤𝑤𝑖𝑖(𝑥𝑥𝑡𝑡);𝑚𝑚𝑖𝑖) + (1 − µ)𝑅𝑅�(𝑥𝑥𝑡𝑡). 

Next, we introduce salary cap restriction. A salary cap sets a maximum amount of 

money that each team can spend on player salaries, and this maximum amount of money 

is fixed year by year as a percentage of the total league revenue in the previous season 

divided by the number of teams in the league. Let βϵ(0,1) be the percentage of the total 

league revenue spent on player salaries. Then the total player salaries of team i in period 

t (t ≥ 1) under the salary cap is 𝑐𝑐𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑅𝑅�(𝑥𝑥𝑡𝑡−1).2  

 

3. The Optimal Distribution of Talent 

 

                                                   
2Since the marginal revenue of a team is positive, the budget constraint of a team under the salary 
cap is satisfied with equality. Thus, the salary cap is binding for all teams. 
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3.1  Characterization of the Optimal Distribution of Talent 

 

In this section, we will characterize the optimal talent distribution in the league, which 

maximizes the total league profits. The constrained profit maximization problem for the 

league is given by: 

max ∑ 𝑅𝑅𝑘𝑘(𝑤𝑤𝑘𝑘(𝑥𝑥);𝑚𝑚𝑘𝑘)𝑘𝑘 − 𝑐𝑐 ∑ 𝑥𝑥𝑘𝑘𝑘𝑘  

s.t. ∑ 𝑥𝑥𝑘𝑘𝑘𝑘 = 𝑋𝑋, 

where c is the reservation wage. The first-order conditions for a maximum are then: 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥1
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = ⋯ = ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑁𝑁
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = 𝑐𝑐∗,                    (1) 

∑ 𝑥𝑥𝑘𝑘∗𝑘𝑘 = 𝑋𝑋.                                                         (2) 

The following result characterizes the optimal distribution 𝑥𝑥∗ that satisfies (1). 

 

Proposition 1. Assume that the win percentage of each team satisfies (W-1), (W-2), and 

(W-4). Assume also that the total league revenue is strictly concave. Then the marginal 

total league revenue of talent is equalized across all teams at a talent distribution 𝑥𝑥∗: 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥1
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = ⋯ = ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑁𝑁
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 , 

if and only if the total league revenues are maximized at 𝑥𝑥∗: 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = 0 for all i = 1, … , N. 
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Proof. Since the “if” part is obvious, we prove the “only if” part. Differentiating the total 

league revenue with respect to 𝑥𝑥𝑖𝑖 and using (W-1) yields 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘 = ∑ �𝜕𝜕𝑅𝑅
𝑘𝑘

𝜕𝜕𝑤𝑤𝑘𝑘
− 𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
� 𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘≠𝑖𝑖 .                                        (3) 

We now assume that the marginal total league revenue (3) is equalized across all 

teams at 𝑥𝑥∗. By (W-1) and (W-4), we obtain the symmetric relation for any i and j (i ≠

j): 

𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
− 𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
= −∑ 𝜕𝜕𝑤𝑤𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗𝑘𝑘≠𝑗𝑗 − 𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
= −𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
− ∑ 𝜕𝜕𝑤𝑤𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘≠𝑖𝑖 = 𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

. 

Consequently, the equality between the marginal total league revenues reduces to 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 − ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = �𝜕𝜕𝑅𝑅

𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
− 𝜕𝜕𝑅𝑅𝑗𝑗

𝜕𝜕𝑤𝑤𝑗𝑗
� �𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
� = 0. 

By (W-2), the value in the second bracket is positive. Therefore, the marginal revenue of 

winning is equalized across all teams at 𝑥𝑥∗:  

𝜕𝜕𝑅𝑅1

𝜕𝜕𝑤𝑤1
(𝑤𝑤1(𝑥𝑥∗);𝑚𝑚1) = ⋯ = 𝜕𝜕𝑅𝑅𝑁𝑁

𝜕𝜕𝑤𝑤𝑁𝑁
(𝑤𝑤𝑁𝑁(𝑥𝑥∗);𝑚𝑚𝑁𝑁).                              (4) 

It follows from (3) and (4) that the total league revenues are maximized at 𝑥𝑥∗: 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥1
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = ⋯ = ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑁𝑁
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = 0 for all i = 1, … , N.  □ 

 

Remark. A twice continuously differentiable function of N variables f ∶ X → R  is 

strictly concave if the Hessian matrix H = �𝑓𝑓𝑖𝑖𝑖𝑖� of f is negative definite for every x ∈

X , where 𝑓𝑓𝑖𝑖𝑖𝑖 ≡ 𝜕𝜕2𝑓𝑓(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗�  ( i, j = 1, … N ). H  is negative definite if H  is 
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symmetric, and has a negative dominant diagonal, i.e., if 𝑓𝑓𝑖𝑖𝑖𝑖 < 0  and there is v =

(𝑣𝑣1, … , 𝑣𝑣𝑁𝑁) ≫ 0 such that |𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖| > ∑ �𝑣𝑣𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖�𝑗𝑗≠𝑖𝑖  for every i = 1, … N (see Mas-Colell, 

Whinston & Green (1995, Sections M.C and M.D)). 

For the total league revenue function, the signs of diagonal elements of H are 

negative at 𝑥𝑥∗ because of (4), 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖
2⁄ < 0, and (W-2): 

∑ 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
2 (𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = ∑ �𝜕𝜕

2𝑅𝑅𝑘𝑘

𝜕𝜕𝑤𝑤𝑘𝑘
2
𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
2
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖
� 𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘≠𝑖𝑖 < 0. 

However, the signs of off-diagonal elements are indeterminate: 

∑ 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖
(𝑤𝑤𝑘𝑘(𝑥𝑥∗);𝑚𝑚𝑘𝑘)𝑘𝑘 = �𝜕𝜕

2𝑅𝑅𝑗𝑗

𝜕𝜕𝑤𝑤𝑗𝑗
2
𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
− 𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
2
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

� 𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
+ ∑ �𝜕𝜕

2𝑅𝑅𝑘𝑘

𝜕𝜕𝑤𝑤𝑘𝑘
2
𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
2
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗
� 𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘≠𝑖𝑖,𝑗𝑗 ,  

where the sign of the first term is positive because of 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖
2⁄ < 0 and (W-2), but the 

sign of the second term is indeterminate. 

Let TR(𝑥𝑥) be the total league revenue, and let 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥) ≡ 𝜕𝜕2𝑇𝑇𝑇𝑇(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗�  

(i, j = 1, … N) be its partial derivatives. Let 𝐻𝐻(𝑠𝑠𝑠𝑠) be the (N− 1) × (N − 1) submatrix 

of the Hessian matrix H = �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖� obtained by deleting from H its s–th row and s-th 

column. If the off-diagonal elements of H  are positive, then 𝐻𝐻(𝑠𝑠𝑠𝑠)  has a negative 

dominant diagonal and is therefore negative definite for every s = 1, … , N. By (W-6), 

𝑇𝑇𝑇𝑇𝑖𝑖(𝑥𝑥) ≡ 𝜕𝜕𝜕𝜕𝜕𝜕(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄  is homogeneous of degree -1. Thus, by Euler’s formula and the 

first-order condition 𝑇𝑇𝑇𝑇𝑖𝑖(𝑥𝑥∗) = 0 , we obtain ∑ 𝑥𝑥𝑗𝑗∗𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥∗)𝑗𝑗≠𝑠𝑠 = −𝑥𝑥𝑠𝑠∗𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥∗) < 0 
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for s ≠ i . 3  Since 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥∗) < 0  (i.e., 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = −|𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖| ) and 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥∗) > 0  (i.e., 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖�), we obtain 𝑥𝑥𝑖𝑖∗|𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖| > ∑ 𝑥𝑥𝑗𝑗∗�𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖�𝑗𝑗≠𝑖𝑖,𝑠𝑠  for every i ≠ s.  □ 

By (W-1) and (W-2), along with (W-4), the optimal distribution 𝑤𝑤∗ =

�𝑤𝑤1(𝑥𝑥∗), … ,𝑤𝑤𝑁𝑁(𝑥𝑥∗)� of the win percentages is uniquely determined by the equalization 

of the marginal revenues of winning across teams (4) and the adding-up constraint, and 

then the optimal distribution 𝑥𝑥∗ = (𝑥𝑥1∗, … , 𝑥𝑥𝑁𝑁∗ ) of talent is uniquely determined by 𝑤𝑤∗ 

and the constraint of fixed-supply of talent (2) in the N-team case, as in the two-team case. 

(Note that Proposition 1 does not require the assumptions of (W-3) and (W-5), and thus 

this result holds irrespective of the types of the conjectural variations 𝑑𝑑𝑥𝑥𝑗𝑗 𝑑𝑑𝑥𝑥𝑖𝑖⁄ , 

“Walrasian” or “Nash”.)  

Under the concavity and complementarity assumptions imposed on the revenue 

function, 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖
2⁄ < 0 and 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑚𝑚𝑖𝑖⁄ > 0, and (W-2), condition (4) implies that 

the win percentage and the talent level of a larger-market team are higher than those of a 

smaller-market team: 𝑤𝑤1(𝑥𝑥∗) < ⋯ < 𝑤𝑤𝑁𝑁(𝑥𝑥∗) and 𝑥𝑥1∗ < ⋯ < 𝑥𝑥𝑁𝑁∗  for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁 . 

This implies that there exists a trade-off between the total league profit maximization and 

competitive balance, or uncertainty of outcome. 

 

                                                   
3For homogeneous functions and Euler’s formula, see, for example, Mas-Colell, Whinston, & Green 
(1995, Section M.B).  
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3.2  The Implications of Proposition for Revenue Sharing and Salary Caps 

 

We now state the implications of Proposition 1 for revenue sharing and salary caps. To 

do so, we consider a situation where the league has used equal revenue sharing (µ = 0) 

since period 0, and then introduces the salary cap in period 1. The long-run profit of team 

i, which is defined as the sum of per-period profits, is given by: 

Π𝑖𝑖 = 𝑅𝑅�(𝑥𝑥0) − 𝑐𝑐0𝑥𝑥𝑖𝑖𝑖𝑖 + ∑ �𝑅𝑅�(𝑥𝑥𝑡𝑡) − 𝛽𝛽𝑅𝑅�(𝑥𝑥𝑡𝑡−1)�𝑡𝑡≥1 . 

After rearranging terms, it is rewritten as: 

Π𝑖𝑖 = (1 − 𝛽𝛽)𝑅𝑅�(𝑥𝑥0) − 𝑐𝑐0𝑥𝑥𝑖𝑖𝑖𝑖 + (1 − 𝛽𝛽)∑ 𝑅𝑅�(𝑥𝑥𝑡𝑡)𝑡𝑡≥1 . 

The talent level of each team in each period t is independently determined so that the 

long-run profit is maximized. The first-order conditions for the profit maximization of 

the teams are then given by:  

(1 − 𝛽𝛽) 𝜕𝜕𝑅𝑅�

𝜕𝜕𝑥𝑥𝑖𝑖0
(𝑥𝑥0∗) = 𝑐𝑐0 for i = 1, … , N, 

(1 − 𝛽𝛽) 𝜕𝜕𝑅𝑅�

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖
(𝑥𝑥𝑡𝑡∗) = 0 for  i = 1, … , N and t = 1, 2, …                      (5) 

∑𝑥𝑥𝑘𝑘𝑘𝑘∗ = 𝑋𝑋 for all t = 0, 1, 2, …,. 

First, a unique equilibrium distribution that satisfies (5) is 𝑥𝑥∗ for all t ≥ 0. 

This implies that if the salary cap is endogenously determined, then a combination of 

equal revenue sharing and the salary cap cannot get rid of the competitive imbalance. 
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More specifically, increased revenue sharing worsens the competitive balance and the 

introduction of the salary cap does not improve it. This contrasts with the results of 

Késenne (2000b) and Dietl et al. (2011) mentioned in the Introduction.  

Second, the equilibrium salary per unit of talent under equal revenue sharing and 

without the salary cap is 𝑐𝑐0 = 0. This is because increased revenue sharing reduces the 

marginal revenue of talent. This result implies that equal revenue sharing and salary 

restrictions (cap and floor) should be used simultaneously to secure a positive amount of 

financial resources for player salaries. 

 

4. Player Trade and Stability of a Talent Distribution 

 

In the previous section, we have shown that if a combination of equal revenue sharing 

and the salary cap is used in period t ≥ 1, then the optimal distribution of talent 𝑥𝑥∗ 

becomes an equilibrium in period t ≥ 1. However, we should note that the salary cap 

cannot be used in period 0 because there is no period before period 0, and thus the total 

player salaries for period 0 cannot be determined appropriately. Also, as stated in Section 

3.2, equal revenue sharing cannot be used without any salary restrictions (cap and floor). 

In the remaining sections, we will explore whether or not 𝑥𝑥∗ can be achieved in period 
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1 through a process of player trading among teams under the restriction of the salary cap 

when the initial distribution in period 0, 𝑥𝑥0, is different from 𝑥𝑥∗.  

For the purpose, we introduce incentive constraints for player trading and the 

concept of stability of a talent distribution. The process of player trading considered here 

consists of successive bilateral trades between teams. A bilateral trade is defined as 

follows. 

 

Definition. Let 𝑥𝑥𝜐𝜐−1 = (𝑥𝑥1𝜐𝜐−1,⋯ , 𝑥𝑥𝑁𝑁𝜐𝜐−1) with ∑𝑥𝑥𝑘𝑘𝜐𝜐−1 = 𝑋𝑋 be a talent distribution in 

the league, and let 𝑐𝑐𝑖𝑖𝜐𝜐−1 be the salary per unit of talent of each team i. A bilateral trade 

between teams i and j (i ≠ j) in Step υ (υ = 1, 2, …) will take place, if and only if all 

of the incentive constraints (a)-(c) are satisfied for a unique equilibrium distribution 𝑥𝑥𝑒𝑒 =

(𝑥𝑥1𝑒𝑒 ,⋯ , 𝑥𝑥𝑁𝑁𝑒𝑒 ) with ∑𝑥𝑥𝑘𝑘𝑒𝑒 = 𝑋𝑋 in the player market:4  

(a) 𝑐𝑐𝑖𝑖𝜐𝜐−1 > 𝑐𝑐𝑗𝑗𝜐𝜐−1, (b) 𝑥𝑥𝑖𝑖𝜐𝜐−1 < 𝑥𝑥𝑖𝑖𝑒𝑒, and (c) 𝑥𝑥𝑗𝑗𝜐𝜐−1 > 𝑥𝑥𝑗𝑗𝑒𝑒.  

The outcome of the trade in Step υ is denoted by 𝑥𝑥𝜐𝜐 = (𝑥𝑥1𝜐𝜐,⋯ , 𝑥𝑥𝑁𝑁𝜐𝜐 ) with ∑𝑥𝑥𝑘𝑘𝜐𝜐 = 𝑋𝑋. 

 

The incentive constraint (a) for players implies that players of team j have an 

                                                   
4The use of 𝑥𝑥𝑖𝑖𝑒𝑒 as a target level of every team i can also be justified by the following result: if a 
supermodular game has a unique equilibrium, then it is dominance solvable and the unique 
equilibrium survives IESDS (iterated elimination of strictly dominated strategy) (see Milgrom and 
Roberts 1990, p.1266). For complementarity properties of the revenue function, see Appendix A2. 
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incentive to transfer to team i because the salary is higher in team i than in team j. The 

incentive constraint (b) for team i implies that team i has an incentive to acquire new 

players, 𝑤𝑤𝑖𝑖(𝑥𝑥𝜐𝜐−1) < 𝑤𝑤𝑖𝑖(𝑥𝑥𝑒𝑒)  and 𝜕𝜕𝜋𝜋𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄ > 0 , because an increase in revenues 

brought about by an increase in the win percentage is greater than an increase in salary 

payments. The incentive constraint (c) for team j implies that team j has an incentive 

to release its players, 𝑤𝑤𝑗𝑗(𝑥𝑥𝜐𝜐−1) > 𝑤𝑤𝑗𝑗(𝑥𝑥𝑒𝑒) and 𝜕𝜕𝜋𝜋𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗� < 0 , because a decrease in 

salary payments is greater than a decrease in revenues. 

A talent distribution 𝑥𝑥𝜐𝜐−1 is called unstable if there is at least one pair i and j 

that satisfies all of the constraints (a)-(c), and is stable otherwise. By definition, the 

equilibrium distribution 𝑥𝑥𝑒𝑒  is stable. Since 𝑥𝑥∗  is a unique equilibrium distribution 

under equal revenue sharing and the salary cap, it is stable under these arrangements. 

However, we should note that the concept of stability does not mean that a stable 

distribution can necessarily be achieved through the process of player trading, but rather 

means that once a stable distribution is achieved it is maintained afterward. 

If the salary cap restriction is considered, whether or not 𝑥𝑥∗ can be achieved 

depends on the position of the initial distribution 𝑥𝑥0.5 For example, we can show that if  

                                                   
5Without a salary cap, 𝑥𝑥𝑒𝑒 is a unique stable distribution and can be achieved through the process of 

player trading. This is because (b) and (c) imply 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄ > 𝑐𝑐𝑒𝑒 > 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗�  at 𝑥𝑥𝜐𝜐−1 for any i and 

j, and thus (a) can be satisfied for some 𝑐𝑐𝑖𝑖 > 𝑐𝑐𝑒𝑒 > 𝑐𝑐𝑗𝑗. Thus, any distribution other than 𝑥𝑥𝑒𝑒 is unstable. 
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(A) 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑖𝑖∗ and 𝑥𝑥𝑗𝑗0 > 𝑥𝑥𝑗𝑗∗  for all i < J ≤ j, 

then 𝑥𝑥∗ can be achieved through the process of player trading. Condition (A) implies 

that a small-market team (i < J) has an excess demand for talent and a large-market team 

(j ≥ J) has an excess supply of talent. As shown in Section 3.1, 𝑥𝑥∗ satisfies 𝑥𝑥1∗ < ⋯ <

𝑥𝑥𝑁𝑁∗  for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁, and thus (A) also implies that a smaller-market team hires less 

talent than a larger-market team in period 0, i.e., 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑗𝑗0 for all i < J ≤ j. 

We present two preliminary results. First, since the total salary payments of each 

team for period 1 are restricted to 𝑐𝑐𝑖𝑖𝜐𝜐−1𝑥𝑥𝑖𝑖𝜐𝜐−1 = 𝛽𝛽𝑅𝑅�(𝑥𝑥0), (a) in Definition is equivalent to 

𝑥𝑥𝑖𝑖𝜐𝜐−1 < 𝑥𝑥𝑗𝑗𝜐𝜐−1, meaning that team i can afford to acquire players of team j if and only if 

team i hires less talent than team j. Second, the outcome of a trade between teams i 

and j in Step υ is either (a’) 𝑥𝑥𝑖𝑖𝜐𝜐 = 𝑥𝑥𝑗𝑗𝜐𝜐 = �𝑥𝑥𝑖𝑖𝜐𝜐−1 + 𝑥𝑥𝑗𝑗𝜐𝜐−1� 2⁄  (i.e., 𝑐𝑐𝑖𝑖𝜐𝜐 = 𝑐𝑐𝑗𝑗𝜐𝜐), (b’) 𝑥𝑥𝑖𝑖𝜐𝜐 =

𝑥𝑥𝑖𝑖∗, or (c’) 𝑥𝑥𝑗𝑗𝜐𝜐 = 𝑥𝑥𝑗𝑗∗. In case (A), we obtain 𝑥𝑥𝑖𝑖𝜐𝜐−1 < 𝑥𝑥𝑖𝑖∗ < �𝑥𝑥𝑖𝑖𝜐𝜐−1 + 𝑥𝑥𝑗𝑗𝜐𝜐−1� 2⁄  if 𝑥𝑥𝑖𝑖𝜐𝜐−1 +

𝑥𝑥𝑗𝑗𝜐𝜐−1 > 𝑥𝑥𝑖𝑖∗ + 𝑥𝑥𝑗𝑗∗, and �𝑥𝑥𝑖𝑖𝜐𝜐−1 + 𝑥𝑥𝑗𝑗𝜐𝜐−1� 2⁄ < 𝑥𝑥𝑗𝑗∗ < 𝑥𝑥𝑗𝑗𝜐𝜐−1 if 𝑥𝑥𝑖𝑖𝜐𝜐−1 + 𝑥𝑥𝑗𝑗𝜐𝜐−1 < 𝑥𝑥𝑖𝑖∗ + 𝑥𝑥𝑗𝑗∗ . This 

implies that one of the two teams that make a trade can achieve the optimal talent level. 

The result mentioned above is verified as follows: Step 1. Since (a) 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑗𝑗0 

(i.e., 𝑐𝑐𝑖𝑖0 > 𝑐𝑐𝑗𝑗0), (b) 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑖𝑖∗, and (c) 𝑥𝑥𝑗𝑗0 > 𝑥𝑥𝑗𝑗∗, a trade takes place between teams i and 

j (i < J ≤ j). If 𝑥𝑥𝑖𝑖0 + 𝑥𝑥𝑗𝑗0 > 𝑥𝑥𝑖𝑖∗ + 𝑥𝑥𝑗𝑗∗, the outcome of the trade is (b’) 𝑥𝑥𝑖𝑖1 = 𝑥𝑥𝑖𝑖∗ and (c) 

𝑥𝑥𝑗𝑗1 = 𝑥𝑥𝑗𝑗0 − (𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑖𝑖0) > 𝑥𝑥𝑗𝑗∗  (i.e., 𝑐𝑐𝑖𝑖1 > 𝑐𝑐𝑗𝑗1). Step 2. Since team j does not reduce its 
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talent to the optimal level yet, a new trade subsequently takes place between team j and 

some team h (< J) with (a) 𝑥𝑥ℎ1 < 𝑥𝑥𝑗𝑗1  (i.e., 𝑐𝑐ℎ1 > 𝑐𝑐𝑗𝑗1) and (b) 𝑥𝑥ℎ1 < 𝑥𝑥ℎ∗ . If 𝑥𝑥ℎ1 + 𝑥𝑥𝑗𝑗1 <

𝑥𝑥ℎ∗ + 𝑥𝑥𝑗𝑗∗, then the outcome of the trade is (b) 𝑥𝑥ℎ2 = 𝑥𝑥ℎ1 + �𝑥𝑥𝑗𝑗1 − 𝑥𝑥𝑗𝑗∗� < 𝑥𝑥ℎ∗  and (c’) 𝑥𝑥𝑗𝑗2 =

𝑥𝑥𝑗𝑗∗  (i.e., 𝑐𝑐ℎ2 > 𝑐𝑐𝑗𝑗2 ), and so on. Step N-1. The process of successive bilateral trades 

terminates when a stable distribution is reached. By the constraint of fixed-supply of 

talent, ∑ (𝑥𝑥𝑖𝑖∗ − 𝑥𝑥𝑖𝑖0)𝑖𝑖<𝐽𝐽 = ∑ �𝑥𝑥𝑗𝑗0 − 𝑥𝑥𝑗𝑗∗�𝑗𝑗≥𝐽𝐽 , 𝑥𝑥∗ is achieved on termination.  

 

5. A No-trade Result and the Role of a Salary Cap 

 

In this section, we will show that when the league used a pool sharing in period 0, and 

then introduces a combination of equal revenue sharing and a salary cap in period 1, the 

optimal distribution 𝑥𝑥∗  cannot be achieved through the process of off-season player 

trading among teams under the newly introduced salary cap restriction.  

For the purpose, we consider a situation where the league used the pool sharing 

with a share parameter 𝜇𝜇 ∈ (0,1) in period 0, and then introduces a combination of equal 

revenue sharing and the salary cap with a share parameter β ∈ (0,1 − 𝜇𝜇) in period 1. 

After rearranging terms, the long-run profit of team i is written as: 

Π𝑖𝑖 = 𝑅𝑅�𝑖𝑖(𝑥𝑥0) − 𝑐𝑐𝜇𝜇𝑥𝑥𝑖𝑖0 + (1 − 𝛽𝛽)∑ 𝑅𝑅�(𝑥𝑥𝑡𝑡)𝑡𝑡≥1 , 
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where 𝑅𝑅�𝑖𝑖(𝑥𝑥0) = 𝜇𝜇𝑅𝑅𝑖𝑖(𝑤𝑤𝑖𝑖(𝑥𝑥0);𝑚𝑚𝑖𝑖) + (1 − 𝜇𝜇 − 𝛽𝛽)𝑅𝑅�(𝑥𝑥0) is the post-sharing revenue of 

team i in period 0 and 𝑐𝑐𝜇𝜇 is the salary per unit of talent under the pool sharing. The 

first-order conditions for the profit maximization of the teams are then given by:  

𝜕𝜕𝑅𝑅�𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖0
(𝑥𝑥0∗) = 𝑐𝑐𝜇𝜇 for i = 1, … , N,                                         (6) 

𝜕𝜕𝑅𝑅�

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
(𝑥𝑥𝑡𝑡∗) = 0 for i = 1, … , N and t = 1, 2, …,                             (7) 

∑𝑥𝑥𝑘𝑘𝑘𝑘∗ = 𝑋𝑋 for all t = 0, 1, 2, …,.                                        (8) 

By Proposition 1, (6), and (7), a unique equilibrium distribution is 𝑥𝑥0∗ ≠ 𝑥𝑥∗ for t = 0 

and 𝑥𝑥𝑡𝑡∗ = 𝑥𝑥∗ for t ≥ 1. For notational simplicity, we write 𝑥𝑥0 ≡ 𝑥𝑥0∗. 

The following result shows the relation between 𝑥𝑥0 and 𝑥𝑥∗. 

 

Proposition 2. Assume that the win percentage of each team satisfies (W-1)-(W-6). 

Assume also that the post-sharing revenue satisfies (I) 𝜕𝜕2𝑅𝑅�𝑖𝑖(𝑥𝑥0) 𝜕𝜕𝑥𝑥𝑖𝑖2⁄ < 0  and (II) 

𝜕𝜕2𝑅𝑅�𝑖𝑖(𝑥𝑥0) 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗� > 0  at 𝑥𝑥0  for i ≠ j  and i, j = 1, … , N . Then there is a threshold 

1 < J < N such that 

(B) (i) 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑗𝑗0 and (ii)  𝑥𝑥𝑖𝑖0 > 𝑥𝑥𝑖𝑖∗ and 𝑥𝑥𝑗𝑗0 < 𝑥𝑥𝑗𝑗∗ for all i < J ≤ j. 

 

The proof of Proposition 2 is given in the Appendix A1. The implications of 

Proposition 2 are stated as follows. First, (i) and (ii) of condition (B) imply that 𝑥𝑥0 is 
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stable in period 1 and is maintained afterward, even if it is no longer an equilibrium 

distribution after the regime shift. The reason for the stability is that under the salary cap 

(i) is equivalent to 𝑐𝑐𝑖𝑖0 > 𝑐𝑐𝑗𝑗0 for all i < J ≤ j, and the salary floor prevents small-market 

teams (i < J) with an excess supply of talent (𝑥𝑥𝑖𝑖0 > 𝑥𝑥𝑖𝑖∗) from lowering 𝑐𝑐𝑖𝑖, and the salary 

cap prevents large-market teams (j ≥ J) with an excess demand for talent (𝑥𝑥𝑗𝑗0 < 𝑥𝑥𝑗𝑗∗) from 

raising 𝑐𝑐𝑗𝑗, and thus no player trading takes place between a small-market team and a 

large-market team.  

Second, since (ii) of condition (B) states that increased revenue sharing worsen 

competitive balance in equilibrium, the no-trade result implies that the role of the salary 

cap is not to increase the total league profits, but to maintain (not improve) competitive 

balance in the league.   

Third, Proposition 2 implies that two-team models can be justified as a first 

approximation of the N-team model in studying the impact of revenue sharing. In this 

proposition, we can divide the teams in the N-team league into two groups: a group of 

small-market teams ( i < J) and a group of large-market teams ( j ≥ J). Since (ii) of 

condition (B) implies that all small-market (large-market) teams respond to increased 

revenue sharing in the same direction, a small-market team and a large-market team in a 

two-team model can be regarded as a representative team of each group in the N-team 
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model, respectively. 
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Appendix A1. Proof of Proposition 2 

 

First, we show under (W-1)-(W-4) that (i) 𝑥𝑥0 = (𝑥𝑥10,⋯ , 𝑥𝑥𝑁𝑁0 ) satisfies 𝑥𝑥10 < ⋯ < 𝑥𝑥𝑁𝑁0  for 

𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁. We assume, by way of contradiction, that there exist i and j such that 

𝑥𝑥𝑖𝑖0 ≥ 𝑥𝑥𝑗𝑗0 and 𝑚𝑚𝑖𝑖 < 𝑚𝑚𝑗𝑗. As in the proof of Proposition 1, by (W-1) and (W-4), the first-

order conditions (6) for teams i and j reduce to  

𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
�𝜇𝜇 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
+ Φ(𝜇𝜇,𝛽𝛽) �𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
�� = 𝜕𝜕𝑅𝑅𝑗𝑗

𝜕𝜕𝑤𝑤𝑗𝑗
�𝜇𝜇 𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
+ Φ(𝜇𝜇,𝛽𝛽) �𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
��,         (9) 

where Φ(𝜇𝜇,𝛽𝛽) = (1 − 𝜇𝜇 − 𝛽𝛽) 𝑁𝑁⁄ > 0 . By (W-3), 𝑥𝑥𝑖𝑖0 ≥ 𝑥𝑥𝑗𝑗0  implies 𝜕𝜕𝑤𝑤𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄ ≤

𝜕𝜕𝑤𝑤𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗⁄ . Thus, by (9), 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ ≥ 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑤𝑤𝑗𝑗�  must hold at 𝑥𝑥0 for any 0 < µ < 1. On 

the other hand, by (W-2) and 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖
2⁄ < 0 and 𝜕𝜕2𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑚𝑚𝑖𝑖⁄ > 0, 𝑥𝑥𝑖𝑖0 ≥ 𝑥𝑥𝑗𝑗0 and 

𝑚𝑚𝑖𝑖 < 𝑚𝑚𝑗𝑗  implies that 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ < 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑤𝑤𝑗𝑗�  at 𝑥𝑥0 . Contradiction. Therefore, the 

desired result is obtained.  □  

Next, we show under (W-1)-(W-6) that (ii) there is a thresholds 1 < J < N 

such that 𝑥𝑥𝑖𝑖0 > 𝑥𝑥𝑖𝑖∗ for i < J and 𝑥𝑥𝑖𝑖0 < 𝑥𝑥𝑖𝑖∗ for i ≥ J. To do so, we investigate the shifts 
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of the teams’ demand curves for talent caused by increased revenue sharing. 

Differentiating 𝜕𝜕𝑅𝑅�𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄  given in (6) with respect to µ and then using (7) to evaluate 

the result at 𝑥𝑥∗ gives us:  

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅�𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
(𝑥𝑥∗) = 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
(𝑤𝑤𝑖𝑖(𝑥𝑥∗);𝑚𝑚𝑖𝑖) ∙

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

(𝑥𝑥∗) > 0.                             (10) 

As shown in Section 3.1, by (W-1), (W-2), and (W-4), 𝜕𝜕𝑅𝑅1 𝜕𝜕𝑤𝑤1⁄ = ⋯ = 𝜕𝜕𝑅𝑅𝑁𝑁 𝜕𝜕𝑤𝑤𝑁𝑁⁄  at 

𝑥𝑥∗ (see (4)) and 𝑥𝑥1∗ < ⋯ < 𝑥𝑥𝑁𝑁∗  for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁. In addition, by (W-3), we obtain 

𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ > 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  for 𝑥𝑥𝑖𝑖∗ < 𝑥𝑥𝑗𝑗∗. Therefore, it follows from (10) that the size 

of the downward shift of the demand curve evaluated at 𝑥𝑥∗ when the share parameter is 

reduced by µ is greater for a smaller-market team than for a larger-market team: 

𝜇𝜇 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅�1

𝜕𝜕𝑥𝑥1
(𝑥𝑥∗) > ⋯ > 𝜇𝜇 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅�𝑁𝑁

𝜕𝜕𝑥𝑥𝑁𝑁
(𝑥𝑥∗) for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁 and 0 < 𝜇𝜇 < 1,       (11) 

where µ𝜕𝜕�𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ � 𝜕𝜕𝜕𝜕⁄ = 𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ . 

Define a system of differential equations 𝑥𝑥𝚤̇𝚤 = 𝑍𝑍𝑖𝑖(𝑥𝑥) (i = 1, … , N) over the 

simplex ∑𝑥𝑥𝑖𝑖 = 𝑋𝑋, where 𝑍𝑍𝑖𝑖(𝑥𝑥) = 𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ − 𝑐𝑐𝜇𝜇. By (6), 𝑥𝑥0 is a unique stationary 

point of the system. By (8), we have ∑ 𝑥̇𝑥𝑖𝑖 = ∑𝑍𝑍𝑖𝑖(𝑥𝑥) = 0. It follows from this and (11) 

that there exists a threshold 1 < J < N  such that 𝑍𝑍𝑖𝑖(𝑥𝑥∗) > 0  for all i < J  and 

𝑍𝑍𝑖𝑖(𝑥𝑥∗) < 0  for all i ≥ J  (Since 𝑥𝑥0 ≠ 𝑥𝑥∗ , by (6) and (7), there is no i  such that 

𝑍𝑍𝑖𝑖(𝑥𝑥∗) = 0). Thus, if 𝑥𝑥0  is locally and asymptotically stable under the differential 

equation system above, then the talent level increases 𝑥𝑥𝑖𝑖∗ < 𝑥𝑥𝑖𝑖0 for i < J and decreases 
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𝑥𝑥𝑖𝑖∗ > 𝑥𝑥𝑖𝑖0 for i ≥ J along the paths from 𝑥𝑥∗ to 𝑥𝑥0 for sufficiently small µ > 0. 

We show that if conditions (I) and (II) are satisfied, then 𝑥𝑥0 is locally and 

asymptotically stable. By (W-6), 𝑍𝑍𝑖𝑖  is homogeneous of degree -1. Thus, by Euler’s 

formula and 𝑍𝑍𝑖𝑖(𝑥𝑥0) = 0, we obtain ∑ 𝑥𝑥𝑗𝑗0𝑍𝑍𝑗𝑗𝑖𝑖(𝑥𝑥0)𝑗𝑗≠𝑁𝑁 = −𝑥𝑥𝑁𝑁0𝑍𝑍𝑁𝑁𝑖𝑖 (𝑥𝑥0) < 0, where 𝑍𝑍𝑗𝑗𝑖𝑖 ≡

𝜕𝜕𝑍𝑍𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗� . Since conditions (I) and (II) respectively imply that 𝑍𝑍𝑖𝑖𝑖𝑖(𝑥𝑥0) < 0 (i.e., 𝑍𝑍𝑖𝑖𝑖𝑖 =

−�𝑍𝑍𝑖𝑖𝑖𝑖� ) and 𝑍𝑍𝑗𝑗𝑖𝑖(𝑥𝑥0) > 0  (i.e., 𝑍𝑍𝑗𝑗𝑖𝑖 = �𝑍𝑍𝑗𝑗𝑖𝑖� ) at 𝑥𝑥0  for i ≠ j  and i, j = 1, … , N , the 

reduced Jacobian matrix �𝑍𝑍𝑗𝑗𝑖𝑖� of 𝑍𝑍𝑖𝑖(𝑥𝑥) (i, j = 1, … , N − 1) has a negative dominant 

diagonal, i.e., 𝑥𝑥𝑖𝑖0�𝑍𝑍𝑖𝑖𝑖𝑖� > ∑ 𝑥𝑥𝑗𝑗0�𝑍𝑍𝑗𝑗𝑖𝑖�𝑗𝑗≠𝑖𝑖,𝑁𝑁 , and thus all its characteristic roots have negative 

real parts. Therefore, the desired result is obtained.  □ 

 

We will examine conditions (I) and (II) using (W-2)-(W-5) in the next section. 

The concavity of the CSF (W-3) is the key assumption for (11) in studying the 

impact of revenue sharing. Three remarks on (W-3) are in order. 

 

Remark 1. Whether or not the invariance proposition holds with respect to revenue 

sharing simply depends on the shape of the CSF. (Note that this is also true in the case 

without a salary cap.) As shown in Section 2.2, if we assume the Walrasian conjectures 

∑𝑑𝑑𝑥𝑥𝑘𝑘 𝑑𝑑𝑥𝑥𝑖𝑖⁄ = 0 for all i, then we have 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  for any x and i ≠
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j instead of (W-3). By (4) and (10), µ𝜕𝜕�𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ � 𝜕𝜕𝜕𝜕⁄ = 𝜇𝜇 𝜕𝜕�𝜕𝜕𝑅𝑅�𝑗𝑗(𝑥𝑥∗) 𝜕𝜕𝑥𝑥𝑗𝑗� � 𝜕𝜕𝜕𝜕⁄  

holds for any 0 < µ < 1 and i ≠ j instead of (11), meaning that the size of the shift of 

the demand curve for talent evaluated at 𝑥𝑥∗ is equal for all teams. Thus, revenue sharing 

has no impact on the distribution of talent in the league.  □ 

 

Remark 2. Szymanski (2013, p.324) used a concave CSF to reject the invariance 

proposition. Madden (2015, p.546) also used the concavity of the CSF implicitly to prove 

his Propositions 1 and 2.  □ 

 

Remark 3. Késenne (2005) showed that the sizes of the shifts of the demand curves at an 

equilibrium distribution 𝑥𝑥𝑒𝑒 = (𝑥𝑥1𝑒𝑒 , … , 𝑥𝑥𝑁𝑁𝑒𝑒 ) without revenue sharing (µ = 1) are 

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅�𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑥𝑥𝑒𝑒) > 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅�𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑥𝑥𝑒𝑒) if 𝑥𝑥𝑖𝑖𝑒𝑒 < 𝑥𝑥𝑗𝑗𝑒𝑒, 

where 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅�𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
= 𝜕𝜕𝑅𝑅𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
− 1

𝑁𝑁
∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑒𝑒 �𝑁𝑁−1
𝑁𝑁
− 1

𝑁𝑁
∑ 𝜕𝜕𝑤𝑤𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�𝑘𝑘≠𝑖𝑖 � > 0, 𝑐𝑐𝑒𝑒 > 0 is the salary 

per unit of talent without revenue sharing, and 𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∑𝑥𝑥𝑘𝑘⁄  is the CSF.  

We can prove this result using (W-3). By (W-3), we obtain 

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

(𝑥𝑥𝑒𝑒) > 𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑥𝑥𝑒𝑒) if 𝑥𝑥𝑖𝑖𝑒𝑒 < 𝑥𝑥𝑗𝑗𝑒𝑒.                                       (12) 

By the symmetric relation given in the proof of Proposition 1 𝜕𝜕𝑤𝑤𝑗𝑗 𝜕𝜕𝑥𝑥𝑗𝑗⁄ − 𝜕𝜕𝑤𝑤𝑗𝑗 𝜕𝜕𝑥𝑥𝑖𝑖⁄ =

𝜕𝜕𝑤𝑤𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖⁄ − 𝜕𝜕𝑤𝑤𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗⁄  and (W-2), (12) implies 
𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
� < 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�  at 𝑥𝑥𝑒𝑒. Therefore, by 
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(W-4), we obtain 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑤𝑤𝑘𝑘(𝑥𝑥𝑒𝑒);𝑚𝑚𝑘𝑘)𝑘𝑘 − ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑤𝑤𝑘𝑘(𝑥𝑥𝑒𝑒);𝑚𝑚𝑘𝑘)𝑘𝑘 = 𝑐𝑐𝑒𝑒 �𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
� − 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

� � < 0. 

The desired result follows from this. 

We can also prove the result as follows. By the first-order conditions without 

revenue sharing, 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ ∙ 𝜕𝜕𝑤𝑤𝑖𝑖(𝑥𝑥𝑒𝑒) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ = 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑤𝑤𝑗𝑗� ∙ 𝜕𝜕𝑤𝑤𝑗𝑗(𝑥𝑥𝑒𝑒) 𝜕𝜕𝑥𝑥𝑗𝑗⁄  at 𝑥𝑥𝑒𝑒 , (12) 

implies 𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ < 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑤𝑤𝑗𝑗�  at 𝑥𝑥𝑒𝑒. By an argument exactly analogous to that used in 

the proof of Proposition 1, we obtain 

∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑤𝑤𝑘𝑘(𝑥𝑥𝑒𝑒);𝑚𝑚𝑘𝑘)𝑘𝑘 − ∑ 𝜕𝜕𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑤𝑤𝑘𝑘(𝑥𝑥𝑒𝑒);𝑚𝑚𝑘𝑘)𝑘𝑘 = �𝜕𝜕𝑅𝑅

𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖
− 𝜕𝜕𝑅𝑅𝑗𝑗

𝜕𝜕𝑤𝑤𝑗𝑗
� �𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
− 𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
� < 0. 

The desired result follows from this.  

By an argument exactly analogous to that used in the proof (i) of Proposition 2, 

we obtain 𝑥𝑥1𝑒𝑒 < ⋯ < 𝑥𝑥𝑁𝑁𝑒𝑒  for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁. Consequently, we obtain 

(1 − 𝜇𝜇) 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅�1

𝜕𝜕𝑥𝑥1
(𝑥𝑥𝑒𝑒) > ⋯ > (1 − 𝜇𝜇) 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅�𝑁𝑁

𝜕𝜕𝑥𝑥𝑁𝑁
(𝑥𝑥𝑒𝑒) for 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑁𝑁 and 0 < 𝜇𝜇 < 1, 

where (1 − 𝜇𝜇)𝜕𝜕�𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥𝑒𝑒) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ � 𝜕𝜕𝜕𝜕⁄ = 𝑐𝑐𝑒𝑒 − 𝜕𝜕𝑅𝑅�𝑖𝑖(𝑥𝑥𝑒𝑒) 𝜕𝜕𝑥𝑥𝑖𝑖⁄ . 

From the above argument, if (W-3) is satisfied, then a talent increase in a 

smaller-market team has a greater negative impact on the total league revenue than a talent 

increase in a larger-market team does because of 𝜕𝜕𝑤𝑤𝑗𝑗 𝜕𝜕𝑥𝑥𝑖𝑖⁄ < 𝜕𝜕𝑤𝑤𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗⁄ < 0  and 

𝜕𝜕𝑅𝑅𝑖𝑖 𝜕𝜕𝑤𝑤𝑖𝑖⁄ < 𝜕𝜕𝑅𝑅𝑗𝑗 𝜕𝜕𝑤𝑤𝑗𝑗�  for 𝑚𝑚𝑖𝑖 < 𝑚𝑚𝑗𝑗 , and thus the size of the downward shift of the 

demand curve evaluated at 𝑥𝑥𝑒𝑒 is greater for a smaller-market team than for a larger-
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market team. (Contrary to Késenne’s (2007, p.117) conjecture, a smaller- (larger-) market 

team is a team with less (more) talent in this N-team model).  □ 

 

Appendix A2. Conditions (I) and (II) in Proposition 2: Monotonicity of Marginal 

Revenues 

 

Here we examine conditions (I) and (II). Changes in the marginal post-sharing revenue 

are given by: 

𝑍𝑍𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝑅𝑅�𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
2 = [𝜇𝜇 + Φ(𝜇𝜇,𝛽𝛽)] 𝜕𝜕

2𝑅𝑅𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
2 + Φ(𝜇𝜇,𝛽𝛽) 𝜕𝜕

2𝑅𝑅𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
2 + Φ(𝜇𝜇,𝛽𝛽)∑ 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
2𝑘𝑘≠𝑖𝑖,𝑗𝑗 ,         (13) 

𝑍𝑍𝑗𝑗𝑖𝑖 = 𝜕𝜕2𝑅𝑅�𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= [𝜇𝜇 + Φ(𝜇𝜇,𝛽𝛽)] 𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
+ Φ(𝜇𝜇,𝛽𝛽) 𝜕𝜕2𝑅𝑅𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
+ Φ(𝜇𝜇,𝛽𝛽)∑ 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗𝑘𝑘≠𝑖𝑖,𝑗𝑗 ,    (14) 

where Φ(𝜇𝜇,𝛽𝛽) = (1 − 𝜇𝜇 − 𝛽𝛽) 𝑁𝑁⁄ > 0. Each term in (13) is written as: 

𝜕𝜕2𝑅𝑅𝑙𝑙

𝜕𝜕𝑥𝑥𝑖𝑖
2 = 𝜕𝜕2𝑅𝑅𝑙𝑙

𝜕𝜕𝑤𝑤𝑙𝑙
2 �

𝜕𝜕𝑤𝑤𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖
�
2

+ 𝜕𝜕𝑅𝑅𝑙𝑙

𝜕𝜕𝑤𝑤𝑙𝑙

𝜕𝜕2𝑤𝑤𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

2  for l = 1, … , N.                            (15) 

Each term in (14) for i ≠ j is written as: 

𝜕𝜕2𝑅𝑅𝑙𝑙

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 𝜕𝜕2𝑅𝑅𝑙𝑙

𝜕𝜕𝑤𝑤𝑙𝑙
2
𝜕𝜕𝑤𝑤𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑤𝑤𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑅𝑅𝑙𝑙

𝜕𝜕𝑤𝑤𝑙𝑙

𝜕𝜕2𝑤𝑤𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 for l = 1, … , N.                         (16) 

By (W-4) and (W-5), the first and second terms on the right-hand side of (15) respectively 

equals those of (16) if l = k ≠ i, j.  

First, we examine condition (I). By the concavity of the revenue function, the 

first term in (15) is negative for all l = 1, … , N. By (W-3) and (W-5), the second term in 
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(15) is negative if l = i, and is positive if l ≠ i. Therefore, the value of (15) is negative, 

if the first term is greater than the second term for l ≠ i. 

Next, we move to condition (II). By (W-2) and (W-4), the first term in (16) is 

positive if l = i or l = j, and is negative if l ≠ i, j. By (W-5), the second term in (16) is 

negative if l = i  or l = j, and is positive if l ≠ i, j. Therefore, the value of (16) is 

positive, if the first term is greater than the second term for l = i or l = j, and the second 

term is greater than the first term for l ≠ i, j. 

For example, for the constant-elasticity revenue function 𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑤𝑤𝑖𝑖
𝜀𝜀 with 0 <

ε < 1 and the power form CSF 𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∑ 𝑥𝑥𝑙𝑙⁄ , (15) are 

𝜕𝜕2𝑅𝑅𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
2 =

𝜀𝜀(𝜀𝜀+1)𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗
𝜀𝜀

(∑𝑥𝑥𝑙𝑙)𝜀𝜀+2
> 0 and 𝜕𝜕

2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
2 = 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 𝜀𝜀(𝜀𝜀+1)𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘

𝜀𝜀

(∑𝑥𝑥𝑙𝑙)𝜀𝜀+2
> 0. 

Also, (16) are 

𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 𝜀𝜀𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖

𝜀𝜀−1[𝑥𝑥𝑖𝑖−𝜀𝜀∑ 𝑥𝑥𝑙𝑙𝑙𝑙≠𝑖𝑖 ]
(∑𝑥𝑥𝑙𝑙)𝜀𝜀+2

, 

which are positive only if 0 < ε < 1 (𝑁𝑁 − 1)⁄ .  

For the quadratic revenue function 𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑤𝑤𝑖𝑖 − 𝛼𝛼𝑤𝑤𝑖𝑖
2  with α > 0  and the 

power form CSF 𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∑ 𝑥𝑥𝑙𝑙⁄ , (15) are 

𝜕𝜕2𝑅𝑅𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
2 = 2𝑥𝑥𝑗𝑗�𝑚𝑚𝑗𝑗 ∑𝑥𝑥𝑙𝑙−3𝛼𝛼𝑥𝑥𝑗𝑗�

(∑𝑥𝑥𝑙𝑙)4
 and 𝜕𝜕

2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
2 = 𝜕𝜕2𝑅𝑅𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 2𝑥𝑥𝑘𝑘[𝑚𝑚𝑘𝑘∑𝑥𝑥𝑙𝑙−3𝛼𝛼𝑥𝑥𝑘𝑘]

(∑𝑥𝑥𝑙𝑙)4
, 

which are negative only if α > ∑𝑚𝑚𝑙𝑙 3⁄ . Also, (16) are 

𝜕𝜕2𝑅𝑅𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 2𝛼𝛼𝑥𝑥𝑖𝑖[2∑𝑥𝑥𝑙𝑙−3𝑥𝑥𝑖𝑖]−𝑚𝑚𝑖𝑖 ∑𝑥𝑥𝑙𝑙[∑𝑥𝑥𝑙𝑙−2𝑥𝑥𝑖𝑖]

(∑𝑥𝑥𝑙𝑙)4
,  



29 
 

which are positive only if α > ∑𝑚𝑚𝑖𝑖[(1 − 2𝑤𝑤𝑖𝑖) ∑2𝑤𝑤𝑙𝑙(2 − 3𝑤𝑤𝑙𝑙)⁄ ]. 

In both examples, conditions (I) and (II) are satisfied only if the marginal revenue 

of winning declines rapidly as the win percentage increases. 


