

生物の硬組織形成機構の解明と 炭酸カルシウムを主成分とした複合材料への応用

Keywords: Biomineralization、ナノテクノロジー、アコヤ貝、遺伝子、タンパク質、生体防御

●研究概要

アコヤ貝の貝殻・真珠をモデルとし、硬組織形成機 構を解明するため、その形成機構に関与するタンパク 質とその遺伝子に関する研究を行っています。

また、アコヤ貝による養殖真珠の品質向上のため、ア コヤ貝の生体防御に関する研究も行っています。

所属 遺伝子工学科 進化多様性生物学研究室 講師 氏名 髙木 良介 Takagi Ryosuke rtakagi@waka.kindai.ac.jp

● 研究テーマ

(1)アコヤ貝稜柱層の成長に関与するタンパク質プリズ ミンの機能解析と、結晶成長制御技術に関する研究

生物が作り出す硬組織はバイオミネラルと呼ばれ、形態が 極めて精巧でありナノメートルオーダーで緻密に合成されるこ とから、生物のナノテクノロジーといわれている。このようなバ イオミネラルの合成機構が解明され、人為的に制御できれば、 様々な分野において生物を模倣した無機・有機からなる環境 調和型の複合材料の開発が可能となる。プリズミンは、アコヤ 貝の稜柱層(図1)に特異的に存在する約5kDaのタンパク質で ある(図2)。プリズミンは、そのアミノ酸配列のC末端側の領域 が炭酸カルシウム結晶表面と相互作用し、結晶成長を制御し ていると考えられる(図3)。また、この領域のリン酸化修飾が 結晶成長には必須であると考えられる。そこで、プリズミンの リン酸化修飾部位を特定し、その機能と結晶成長制御機構を 解明することで、人為的に炭酸カルシウムの結晶成長を制御 する技術の開発を目指す。

(2)アコヤ貝の生体防御に関与するチロシナーゼ遺伝 子に関する研究

・真珠の形成はアコヤ貝の生体防御反応の一つである。 真珠 養殖では、母貝へ真珠の核を入れる「挿核」の際に母貝の組 織を大きく傷つけてしまうことが原因で過剰な自然免疫反応 が起こり、このとき生体防御物質として分泌されるチロシナー ゼによって生成されるメラニンが原因で商品価値のない黒青 色真珠が形成されることが知られている。そこで、アコヤ貝の 自然免疫機構を網羅的に解析し、アコヤ貝の過剰な自然免 疫反応を人為的に制御することで、高品質な真珠を安定して 生産する技術の開発を狙う。また、耐病性に優れた母貝を作 出し、数年に一度発生するアコヤ貝の大量死問題の解決を 目指す。

図1アコヤ貝の貝殻

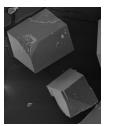
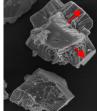

CCACGCGTCCGCCGAAGTTAAGTT ATGGAGTGCCGACACGTCCTCCTAGCTATCCTCCTACTGGTTATTTTGGAGCTGAC Y Q F Y F P K Y Q R F P I Y R E Y D F D R P D P Y D P
CATATGATCGTTTTGAT TGATGAAATTAACATTGATGTCAGATTCCTATAAATTGAAGATGTGCAGTAACAATATAGTG ATCCGGACATTCCGTGTTAATATTGTTGTCAATTTTACCTGACATGATTTGAATTATAATTTATGATAGAATTGTACATTA TTTCATGACTGAATGTTAACTGTCGACTTTTGAGAAAAACCGAAGAATTTCAATCAGAAATAGTTTTCATGAATTGTTTC GenBank Accesstion No. AB368930

図2 プリズミンの遺伝子とアミノ酸配列


方解石結晶形成母液

室温で 3日間

放置

AAAAAAA

※ 結晶の各 表面から垂 直方向に結 晶が成長し ている。

プリズミンを添加

成長した方解石結晶 方解石結晶

図3 プリズミンの作用(in vitro結晶形成実験)

論文.特許等

- · A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein Enzyme Research Volume, Article ID 780549,9 pages (2014)
- Direct Observation of the Influence of Additives on Calcite Hydration by Frequency Modulation Atomic Force Microscopy CRYSTAL GROWTH & DESIGN vol:14 No: 12:6254-6260(2014)
- •The diversity of shell matrix proteins: genomic-wide investigation of the pearl oyster *Pinctada fucata*. Zoolog Sci.30: 801-816 (2013)
- Studies on the Pinctada fucata BMP-2 Gene: Structural Similarity and Functional Conservation of Its Osteogenic Potential within the Animal Kingdom International Journal of Zoology Volume, Article ID 787323, 9 pages (2013)
- · Molecular Cloning and Characterization of the 5'-Flanking Regulatory Region of the Carbonic Anhydrase Nacrein Gene of the Pearl Oyster Pinctada fucata and Its Expression. Biochem Genet. 50: 673-683(2012)