Impact of endogenous hydrogen sulfide on somatic and visceral pain signals

Atsufumi Kawabata, PhD

Division of Pharmacology and Pathophysiology, Faculty of Pharmacy Kinki University 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan

Hydrogen sulfide (H₂S), a toxic gas, is formed from L-cysteine by enzymes including cystathionine-y-lyase (CSE) in the mammalian body, and is now considered the third gasotransmitter after nitric oxide and carbon monoxide. Although ATP-sensitive K^+ (K_{ATP}) channels were first identified as target molecules for H₂S, it is now known that H₂S targets multiple molecules other than K_{ATP} channels. A series of our studies have shown that H₂S enhances T-type Ca^{2+} channel-dependent membrane currents, and that H_2S causes sensitization/activation of nociceptors in a manner dependent on Ca_v3.2 among three isoforms of T-type Ca^{2+} channels, leading to peripheral hyperalgesia. Interestingly, the acceleration of Ca_v3.2 signaling by CSE-derived endogenous H₂S is involved in the maintenance of neuropathic pain caused by surgical spinal nerve injury or by repeated administration of paclitaxel, an anti-cancer agent. The sensitization/activation of Cav3.2 by H₂S in the peripheral ending of nociceptors also participates in signaling of visceral pain in distinct organs including the pancreas, colon and bladder. Of interest is that the visceral pain accompanying pancreatitis and cystitis involves the upregulation of CSE and subsequent increase in endogenous H₂S generation. Together, our studies on the roles of the CSE/H₂S/Ca_y3.2 cascade in pain signaling shed light on the pathogenesis of neuropathic and visceral pain, and may open a new frontier in clinical pain management.